Os componentes de um motor de combustão interna moderno são basicamente os mesmos que eram usados em meados do século passado. O ciclo Otto, patenteado em 1877, não só continua presente nos propulsores atuais como ainda é o mais utilizado em veículos de passeio (motores de ciclo Diesel são comuns na Europa, mas não no Brasil, onde o preço do óleo é subsidiado e, portanto, essa opção é restrita a caminhões, ônibus e outros utilitários).
O fato de nos mantermos fiéis a uma tecnologia dos tempos de antanho não significa a evolução tecnológica não cumpriu seu papel, mas apenas que os princípios básicos continuam valendo, já que o funcionamento do motor pode ser descrito como a transformação da energia química do combustível na energia mecânica resultante da compressão e queima da mistura ar-combustível, no interior da câmara de explosão, mediante a movimentação dos pistões. Para gerar torque e potência (volto a esses conceitos oportunamente), os pistões dos motores de ciclo Otto realizam quatro fases a cada volta completa do virabrequim (também chamado de eixo de manivelas).
Já vimos que os cilindros
— que podem ser em número de 3, 4, 5, 6, 8, 10 e até 12 — ficam no bloco do motor, e que, no interior de cada um deles, um pistão, ligado ao virabrequim pela respectiva biela,
percorre seu curso milhares de vezes
por minuto, alternando movimentos ascendentes e descendentes. Por curso, entenda-se a distância que o êmbolo percorre do ponto morto superior até o ponto
morto inferior (ou vice-versa). O PMS
corresponde à posição mais próxima do cabeçote
que o êmbolo alcança, e o PMI, à mais distante. Ao longo das
quatro fases (ou quatro tempos) do ciclo Otto, o pistão
percorre 4 vezes a distância entre esses dois pontos.
A taxa de compressão de um motor à combustão corresponde ao número de vezes que a mistura ar-combustível é comprimida. Esse parâmetro depende diretamente do curso do pistão: quanto mais longo ele for, mais vezes a mistura será comprimida no interior da câmara de combustão, que é espaço entre remanescente entre cabeça do pistão, quando este alcança o ponto morto superior (PMS) do curso, e a base do cabeçote — mais exatamente o rebaixo circular, com diâmetro correspondente ao do cilindro, onde ficam as válvulas de admissão e de escapamento.
O curso do pistão depende diretamente do tamanho da biela (vide figura), que é o componente responsável por transformar o movimento de sobe e desce do êmbolo (retilíneo, portanto) no movimento circular contínuo do volante do motor (disco metálico que fica na extremidade posterior do virabrequim). Explicando de outra maneira: cabe à biela transmitir a força gerada na câmara de combustão (recebida pelo pistão) para a árvore de manivelas (ou virabrequim), cuja função é gerar e enviar (através do volante) torque, força e rotação ao sistema de transmissão.
A parte superior da biela, chamada de pé, é presa ao pistão por meio de um pino. Isso permite que a peça oscile lateralmente enquanto se move para cima e para baixo. A parte inferior, chamada de cabeça, é presa ao virabrequim, que transforma em rotação o movimento retilíneo do pistão. Como a biela é um componente "físico", a compressão é sempre a mesma, independentemente do regime do regime de giros do motor (RPM), do combustível utilizado e das exigências do veículo em cada situação específica. Daí os engenheiros terem de adequar, em nível de projeto, a taxa de compressão do propulsor ao combustível que será utilizado, levando em conta o desempenho que se pretende extrair do mecanismo.
Nos modelos à gasolina a mistura é comprimida cerca de 10 vezes, em média (taxa de compressão de 10:1), ao passo que as versões a etanol trabalham com relações entre 14:1 e 16:1.
Observação: Em tese, quanto maior for a taxa de compressão, tanto maior será a energia resultante da expansão dos gases durante a combustão (ou seja, mais força será repassada ao virabrequim e deste, através do volante, para o sistema de transmissão). Na prática, porém, há limites a observar, a começar pelo ponto de detonação do combustível. Vale lembrar que nossa gasolina é de péssima qualidade, e que a batida de pino provocada por uma taxa de compressão muito elevada pode produzir sérios danos aos componentes internos do motor.
Uma vez que a biela é um componente "físico", o grande desafio dos projetistas está nos motores flexíveis. Como vimos, gasolina e etanol funcionam melhor com taxas de compressão diferentes, e a solução, pelo menos por enquanto, consiste em estabelecer um meio-termo, embora o ideal fosse alterar a compressão em tempo real, da mesma maneira que o sistema de injeção eletrônica de combustível faz com a taxa estequiométrica (volto a esse assunto mais adiante).
A Nissan vem trabalhando num projeto nesse sentido, e a Porsche já registrou a patente de uma biela com cabeça articulada num excêntrico, cujo movimento ascendente e descendente, controlado por dois tirantes hidráulicos, permite variar o volume da câmara de combustão, elevando a taxa de compressão quando o turbo está funcionando com pressão máxima. No caso dos motores flex aspirados, essa tecnologia possibilitará ajustar a compressão ao etanol, à gasolina ou à mistura de ambos, com sensíveis melhorias tanto no desempenho quanto no consumo e na emissão de poluentes.
Continua no próximo capítulo.