Mostrando postagens com marcador biela. Mostrar todas as postagens
Mostrando postagens com marcador biela. Mostrar todas as postagens

terça-feira, 17 de setembro de 2019

SUTILEZAS DO MOTOR DE CICLO OTTO — CURSO DO PISTÃO, BIELA E TAXA DE COMPRESSÃO


NÃO SAQUE A ARMA SE NÃO FOR ATIRAR. SE ATIRAR, ATIRE PARA MATAR. MORTOS NÃO VOLTAM PARA SE VINGAR.

Os componentes de um motor de combustão interna moderno são basicamente os mesmos que eram usados em meados do século passado. O ciclo Otto, patenteado em 1877, não só continua presente nos propulsores atuais como ainda é o mais utilizado em veículos de passeio (motores de ciclo Diesel são comuns na Europa, mas não no Brasil, onde o preço do óleo é subsidiado e, portanto, essa opção é restrita a caminhões, ônibus e outros utilitários).

O fato de nos mantermos fiéis a uma tecnologia dos tempos de antanho não significa a evolução tecnológica não cumpriu seu papel, mas apenas que os princípios básicos continuam valendo, já que o funcionamento do motor pode ser descrito como a transformação da energia química do combustível na energia mecânica resultante da compressão e queima da mistura ar-combustível, no interior da câmara de explosão, mediante a movimentação dos pistões. Para gerar torque e potência (volto a esses conceitos oportunamente), os pistões dos motores de ciclo Otto realizam quatro fases a cada volta completa do virabrequim (também chamado de eixo de manivelas).

Já vimos que os cilindros — que podem ser em número de 3, 4, 5, 6, 8, 10 e até 12 — ficam no bloco do motor, e que, no interior de cada um deles, um pistão, ligado ao virabrequim pela respectiva biela, percorre seu curso milhares de vezes por minuto, alternando movimentos ascendentes e descendentes. Por curso, entenda-se a distância que o êmbolo percorre do ponto morto superior até o ponto morto inferior (ou vice-versa). O PMS corresponde à posição mais próxima do cabeçote que o êmbolo alcança, e o PMI, à mais distante. Ao longo das quatro fases (ou quatro tempos) do ciclo Otto, o pistão percorre 4 vezes a distância entre esses dois pontos. 

A taxa de compressão de um motor à combustão corresponde ao número de vezes que a mistura ar-combustível é comprimida. Esse parâmetro depende diretamente do curso do pistão: quanto mais longo ele for, mais vezes a mistura será comprimida no interior da câmara de combustão, que é espaço entre remanescente entre cabeça do pistão, quando este alcança o ponto morto superior (PMS) do curso, e a base do cabeçote — mais exatamente o rebaixo circular, com diâmetro correspondente ao do cilindro, onde ficam as válvulas de admissão e de escapamento.

curso do pistão depende diretamente do tamanho da biela (vide figura), que é o componente responsável por transformar o movimento de sobe e desce do êmbolo (retilíneo, portanto) no movimento circular contínuo do volante do motor (disco metálico que fica na extremidade posterior do virabrequim). Explicando de outra maneira: cabe à biela transmitir a força gerada na câmara de combustão (recebida pelo pistão) para a árvore de manivelas (ou virabrequim), cuja função é gerar e enviar (através do volante) torque, força e rotação ao sistema de transmissão.

A parte superior da biela, chamada de , é presa ao pistão por meio de um pino. Isso permite que a peça oscile lateralmente enquanto se move para cima e para baixo. A parte inferior, chamada de cabeça, é presa ao virabrequim, que transforma em rotação o movimento retilíneo do pistão. Como a biela é um componente "físico", a compressão é sempre a mesma, independentemente do regime do regime de giros do motor (RPM), do combustível utilizado e das exigências do veículo em cada situação específica. Daí os engenheiros terem de adequar, em nível de projeto, a taxa de compressão do propulsor ao combustível que será utilizado, levando em conta o desempenho que se pretende extrair do mecanismo.

Nos modelos à gasolina a mistura é comprimida cerca de 10 vezes, em média (taxa de compressão de 10:1), ao passo que as versões a etanol trabalham com relações entre 14:1 e 16:1.

Observação: Em tese, quanto maior for a taxa de compressão, tanto maior será a energia resultante da expansão dos gases durante a combustão (ou seja, mais força será repassada ao virabrequim e deste, através do volante, para o sistema de transmissão). Na prática, porém, há limites a observar, a começar pelo ponto de detonação do combustível. Vale lembrar que nossa gasolina é de péssima qualidade, e que a batida de pino provocada por uma taxa de compressão muito elevada pode produzir sérios danos aos componentes internos do motor.

Uma vez que a biela é um componente "físico", o grande desafio dos projetistas está nos motores flexíveis. Como vimos, gasolina e etanol funcionam melhor com taxas de compressão diferentes, e a solução, pelo menos por enquanto, consiste em estabelecer um meio-termo, embora o ideal fosse alterar a compressão em tempo real, da mesma maneira que o sistema de injeção eletrônica de combustível faz com a taxa estequiométrica (volto a esse assunto mais adiante).

Nissan vem trabalhando num projeto nesse sentido, e a Porsche já registrou a patente de uma biela com cabeça articulada num excêntrico, cujo movimento ascendente e descendente, controlado por dois tirantes hidráulicos, permite variar o volume da câmara de combustão, elevando a taxa de compressão quando o turbo está funcionando com pressão máxima. No caso dos motores flex aspirados, essa tecnologia possibilitará ajustar a compressão ao etanol, à gasolina ou à mistura de ambos, com sensíveis melhorias tanto no desempenho quanto no consumo e na emissão de poluentes.

Continua no próximo capítulo.