Mostrando postagens com marcador sistema de arrefecimento. Mostrar todas as postagens
Mostrando postagens com marcador sistema de arrefecimento. Mostrar todas as postagens

quinta-feira, 3 de outubro de 2019

DE VOLTA À EVOLUÇÃO DO MOTOR À COMBUSTÃO (CICLO OTTO)


TEM GENTE QUE NÃO CONSEGUE ASSOAR O PRÓPRIO NARIZ SEM UM MANUAL DE INSTRUÇÕES.

Pelas razões citadas anteriormente, o número de capítulos desta novela me leva a entremear postagens relacionadas à informática, sob pena de o leitor esquecer que a tecnologia da informação é o carro-chefe deste Blog. Aos recém-chegados e a quem interessar possa, sugiro clicar aqui para ler o post de abertura desta sequência ou aqui para aceder ao capítulo que antecedeu ao último intervalo. Dito isso, vamos adiante.

Da mesma forma como o corpo humano se divide em cabeça, tronco e membros, o motor à combustão do Ciclo Otto divide-se basicamente em cabeçote, bloco e cárter. O bloco (vide figura) é o principal componente, já que abriga os cilindros dentro dos quais pistões ligados por bielas ao virabrequim (ou eixo de manivelas) percorrem seu curso (ou seja, sobem e descem) milhares de vezes por minuto. Em marcha-lenta, o virabrequim gira cerca de 800 vezes por minuto, mas as RPM (rotações por minuto) podem chegar a algo entre 5000 e 7000 no regime de potência máxima — e isso nos veículos de passeio; motores de carros de Fórmula 1 chegam a 18.000 RPM.

Os cilindros podem ser dispostos no bloco de várias maneiras, sendo mais comum ficarem em linha — como nos velhos Chevettes e Opalas da GM —, em "V" — como nos Mavericks e Galaxies da Ford —, ou contrapostos — como nos Fuscas, Brasílias e Kombis e Gols refrigerados a ar (os veículos citados neste exemplo o foram por mero saudosismo deste blogueiro e talvez você nem se lembre deles, mas enfim...). Quanto ao número de cilindros, os Chevettes tinham 4 em linha; os Opalas, 4 ou 6, também em linha; os Mavericks, 4 ou 6 em linha ou 8 em V; os Galaxies, sempre 8 em V; e os modelos da VW retrocitados, 4 cilindros contrapostos (boxer). Há ainda outras tecnologias, como o propulsor Wenkel de pistão rotativo, mas aí já não se trata do Ciclo Otto, que é o espoco desta abordagem.

No interior das "paredes" do bloco, uma "camisa hidráulica" (rede de dutos de lubrificação e arrefecimento) permite a circulação do óleo lubrificante e do líquido de arrefecimento. Note que nos motores modernos, com sistema de refrigeração selada, não se deve usar água (muito menos da torneira, como os frentistas de postos de combustível costumam oferecer para completar o nível do expansor), e sim um líquido de arrefecimento à base de água desmineralizada e etilenoglicol (produto que que não só eleva o ponto de ebulição da água como evita que ela congele em países onde o inverno é rigoroso — mais detalhes nesta postagem).

Note que essa camisa hidráulica se estende também pelo cabeçote, já que o funcionamento do eixo-comando e das válvulas também gera calor. Assim, a junta responsável pelo "casamento perfeito" entre o cabeçote e o bloco é provida de orifícios através dos quais tanto o óleo lubrificante quanto o líquido de arrefecimento, acionados pela bomba de óleo e pela bomba d'água, respectivamente, circulam livremente (mas separadamente) pelas partes altas e baixas do motor.

Por último, mas não menos importante, o cárter (vide imagem à direita), que fica localizado na parte inferior do bloco e funciona como um reservatório de óleo lubrificante . O sistema "úmido", cárter seco, que não fica acoplado ao bloco, mas isso já é outra conversa), facilita a lubrificação do virabrequim e das bielas, já que esses componentes mergulham no óleo a cada giro do motor. Para que o lubrificante alcance as partes altas, uma bomba de óleo acionada mecanicamente conta com um "pescador" que suga o lubrificante e o leva até o cabeçote. Depois de lubrificar o eixo-comando de válvulas e outros componentes da parte alta do motor, o óleo volta ao cárter por gravidade — uma solução simples, mas muito eficaz. Aliás, é por isso que se deve checar o nível do óleo com o motor frio, e também por isso que as medições feitas pelos frentistas sempre acusam falta — o lubrificante está lá, só que não deve tempo de escoar de volta para o cárter.
utilizado na esmagadora maioria dos carros de passeio (alguns modelos de alta performance utilizam 

Observação: Meça o nível do óleo você mesmo, semanalmente, num local plano, de preferência pela manhã, antes de ligar o motor. Na impossibilidade, faça-o somente depois de deixar o motor esfriar por uns 15 minutos (tempo necessário para o óleo escoe das partes altas e retorne ao cárter). O nível deve estar entre as marcas de mínimo e máximo na vareta. Nem mais nem menos. Não invente de colocar mais por “segurança”  além de ser um gasto desnecessário, lubrificante em excesso pode causar vazamentos se os retentores não suportarem o aumento da pressão interna. Além disso, o excesso de óleo pode ir para a câmara de combustão, danificando o catalisador, que é o componente mais caro do sistema de escapamento, ou então sujar as velas, provocando falhas na combustão e prejudicando o funcionamento global do motor. Tenha em mente que os frentistas são comissionados pela venda de óleo, palhetas, aditivos e outros badulaques, daí seu empenho em nos empurrar essas coisas.

Para não encompridar ainda mais esta postagem, o cabeçote fica para o próximo capítulo.

quinta-feira, 29 de agosto de 2019

AINDA SOBRE A EVOLUÇÃO TECNOLÓGICA E OS MOTORES DE COMBUSTÃO INTERNA DO CICLO OTTO — SISTEMA DE ARREFECIMENTO, CABEÇOTE E JUNTA

A POLÍTICA É UMA ARMA; FAZER POLÍTICA É SABER QUANDO APERTAR O GATILHO. 

Vimos que um motor de combustão interna (ciclo Otto) divide-se basicamente em cabeçote, bloco e cárter, que cilindros, pistões, bielas, virabrequim etc. ficam no bloco e que, nas configurações atuais, válvulas e respectivo eixo-comando ficam no cabeçote, que é responsável por controlar a entrada da mistura ar-combustível que preenche os cilindros e, após ela ser comprimida e inflamada na câmara de explosão, expulsar os gases remanescentes. Vimos também que o movimento de sobe e desce dos pistões precisa ocorrer de maneira sincronizada com a abertura e o fechamento das válvulas, e que essa sincronização é feita por engrenagens (ou polias dentadas) presas ao virabrequim e ao eixo-comando de válvulas e ligadas entre si por uma correia (ou corrente) de distribuição. Dito isso, vamos em frente.

Para o motor funcionar adequadamente, sua temperatura precisa ser mantida em torno de 90ºC. Assim, uma mistura de água desmineralizada e etileno glicol circula constantemente por uma "galeria" de dutos existentes nas paredes do bloco e do cabeçote (sem entrar em contato com os componentes internos do motor, tais como válvulas, pistões, bielas etc.), passando de tempos em tempos pelo radiador, onde um fluxo de ar promove a troca de calor com o ambiente.

Nos veículos antigos, o assim chamado sistema de arrefecimento era formado por um radiador — que acumulava as funções de reservatório de água e dissipador de calor —, uma bomba d'água acionada mecanicamente — responsável pela circulação forçada da água e uma hélice, também acionada mecanicamente, que sugava ar "frio" do ambiente e o "empurrava" através das aletas do radiador, de modo a manter a temperatura da água sob controle. Como esse sistema não era selado, a perda de água por evaporação exigia que se checasse o nível regularmente, sob pena de "o motor ferver" — sobretudo em dias de muito calor e/ou em percursos congestionados (em regimes de baixa rotação do motor, a hélice não produzia ventilação suficiente para impedir o superaquecimento do sistema).

Mais adiante, passou-se a utilizar um sistema selado, no qual um líquido de arrefecimento com etilenoglicol (que tanto eleva o ponto de ebulição da água quanto evita que ela congele em situações de baixas temperaturas). A ventoinha, por ser elétrica, não rouba potência do motor; por ser controlada por um sensor de temperatura, ela só é acionada quando isso realmente é necessário. A hélice gira sempre em alta velocidade, independentemente da rotação do virabrequim, e uma válvula termostática posicionada entre o radiador e o bloco dosa a passagem do líquido de arrefecimento, fazendo com que que a temperatura ideal seja atingida em poucos minutos, mesmo em dias frios. Por fim, um vaso expansor translúcido permite verificar o nível do líquido (que é colorido, conforme se vê na imagem acima) sem que seja preciso remover o tampão. 

Observação: O ideal é fazer essa checagem com o motor frio e o carro parado numa superfície plana, e que o nível do líquido deve ficar entre as marcar de "mínimo" e "máximo" — e se for preciso completá-lo, usar o produto adequado, já que abastecer o reservatório com água pura irá alterar a proporção do etilenoglicol.  

O cabeçote é afixado ao bloco do motor por parafusos que devem ser apertados de forma alternada e com o auxílio de um torquímetro. Uma junta de metal elastômero (ou de metal multicamadas combinado comum componente líquido, semelhante a uma cola) garante o perfeito assentamento das peças, o que é fundamental para impedir o vazamento da compressão e evitar que o líquido de arrefecimento contamine o óleo lubrificante, além de proteger as partes metálicas de corrosão e empenamento. 

Neste ponto, abro um parêntese para dizer que a "câmara de explosão" — mencionada de passagem nas postagens anteriores — consiste no espaço remanescente, no interior do cilindro, entre a cabeça do pistão no PMS (ponto morto superior) e um "rebaixo" no cabeçote, que tem o mesmo diâmetro do cilindro e funciona como uma pequena "extensão" deste (repare na figura ao lado). É para dentro desse espaço que a mistura ar-combustível é "empurrada" pelo movimento ascendente do êmbolo no ciclo de compressão (você encontrará mais detalhes no capítulo anterior, embora essa questão vá ser revista mais adiante), para, então, ser inflamada pela centelha produzida pela vela de ignição, que dá início ao ciclo de combustão (ou explosão), que corresponde à única fase do ciclo Otto que realiza trabalho, ou seja, que gera energia. 

Continua no próximo capítulo.