Mostrando postagens com marcador motor ciclo Otto. Mostrar todas as postagens
Mostrando postagens com marcador motor ciclo Otto. Mostrar todas as postagens

quarta-feira, 21 de novembro de 2018

VEÍCULOS FLEX: MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 10) — AINDA SOBRE TORQUE E POTÊNCIA


QUANDO VOCÊ TEM TODAS AS RESPOSTAS, ALGUÉM VEM E MUDA AS PERGUNTAS.

O que eu publiquei sobre torque e potência no post da última quarta-feira me pareceu suficiente para dar uma ideia ao leitor do que são e o que representam os valores informados no manual do proprietário dos veículos sob essas rubricas.  Todavia, escrever sobre temas complexos numa linguagem acessível a leigos, mas que não insulte a inteligência dos iniciados, é sempre um desafio, como dá conta o comentário de um visitante assíduo aqui do Blog. Então, em atenção a ele — e a outros leitores que eventualmente ainda tenham dúvidas sobre o assunto —, resolvi esmiuçar melhor essa questão, que realmente é um tanto nebulosa.

Como eu disse na postagem anterior, levar algo de um ponto a outro é trabalho; portanto, torque é trabalho (mesmo sendo uma força com tendência a girar objetos, como eu disse anteriormente). A potência, por sua vez, tem a ver com a rapidez com que esse trabalho é realizado.  

Observação: No âmbito da mecânica automotiva, chamamos torque ao esforço de torção produzido pelo motor. Para medi-lo, acoplamos esse motor a um dinamômetro, aceleramos ao máximo e usamos um freio hidráulico (ou elétrico) para limitar as rotações a 1000, 2000, 3000, e assim por diante. A partir dos valores do torque nesse regimes, calculamos a potência multiplicando-os pelo número de rotações por minuto (rpm) em cada situação específica.

O trabalho que um Fusca 1300 e um Mustang 5.0 realizam ao subir uma ladeira é o mesmo; a diferença é que o Ford se desincumbe da tarefa em bem menos tempo, pois seu gigantesco V8 gera 466 cv de potência a 7.000 rpm e 56,7 kgfm de torque a 4.600 rpm, ao passo que o boxer de 4 cilindros do fusquinha produz 46 cv de potência a 4.600 rpm e 9,1 kgfm de torque a 2600 rpm.

O mesmo raciocínio se aplica à aceleração. Numa hipotética largada conjunta, o Mustang atingiria 100 km/h em apenas 4,3 segundos, enquanto o Fusca levaria intermináveis 31 segundos para alcançar a mesma velocidade. A título de curiosidade, a velocidade máxima do Mustang é de 250 km/h (e isso porque é limitada eletronicamente), enquanto a do Fusca é de 115 km/h (e isso com vento a favor). Daí se conclui que quem tem mais potência realiza o trabalho em menos tempo.

Fugindo um pouco à pergunta do leitor (que agora, suponho, está respondida), acho oportuno aprovetar este ensjo para complementar o que eu já disse em outras postagens desta interminável sequência, mas não neste nível de detalhes:

Nos motores aspirados, a mistura ar-combustível é sugada para o interior da câmara de explosão pela depressão resultante do movimento descendente que o pistão realiza no ciclo de admissão. Na sequência, ela é comprimida (ciclo de compressão) e inflamada pela vela de ignição (ciclo de explosão, gerando as altas pressões internas que empurram o êmbolo para baixo, fazendo o motor funcionar). Finalmente, os gazes resultantes da explosão são expulsos do interior da câmara pelo movimento ascendente do pistão (ciclo de descarga), e aí começa tudo outra vez (mais detalhes nesta postagem). É bom que isso fique bem claro, pois assim ficará mais fácil de entender o funcionamento do turbocompressor, que é o assunto da próxima postagem.

Cabe aos projetistas garantir que a potência palpável (ou utilizável) não apareça somente em regimes muito elevados de rotação. Isso até poderia funcionar nas pistas, mas inviabilizaria a condução do veículo no trânsito urbano, já que para vencer a inércia seria preciso levar o motor a um regime de giros muito elevado — o que, dentre outras coisas, reduziria drasticamente a vida útil dos componentes da embreagem. E é aí que entra o torque.

Observação: A função da embreagem é acoplar ou desacoplar dois sistemas rotativos distintos (o motor e o câmbio, no caso do automóvel), permitindo-lhes girar em conjunto, separadamente, ou em rotações diferentes. O modelo usado nos veículos equipados com câmbio manual é acionado pelo motorista através de um pedal, que leva o garfo a pressionar o rolamento de encosto contra a mola-diafragma do platô, reduzindo a pressão sobre o disco de fricção. Conforme esse pedal é liberado, dá-se o efeito inverso, ou seja, o disco volta a ser pressionado contra o volante do motor, elevando gradualmente a rotação até igualá-la à do eixo piloto. No câmbio automático, um conversor de torque faz o papel da embreagem, e um conjunto de planetárias, auxiliado por um sofisticado mecanismo de apoio, produz as relações de transmissão que são repassadas às rodas motrizes. Já as transmissões automatizadas as mesmas caixas das manuais; a diferença é que o acionamento da embreagem e troca das marchas ficam a cargo de um robô (daí esse sistema ser conhecido também como transmissão robotizada).   

Votando à vaca fria, quanto mais cedo — em termos de rotação — o torque surgir, melhor será o aproveitamento da potência produzida pelo motor. É aí que entra a “curva de torque” — tanto melhor quanto mais “plana” ela for, pois é bom que o torque esteja disponível em rotações baixas, mas também é preciso que ele continue disponível (ou mesmo cresça) à medida que o giro aumenta.

O maior desafio dos projetistas é desenvolver um motor “elástico”, que tenha potência palpável em baixas rotações e muita potência em regimes de giro mais elevados. Contribuem para isso requintes tecnológicos como o aumento do número de válvulas por cilindro, a adoção de comandos variáveis, os sistemas de sobrealimentação — seja através de uma turbina acionada pelos gases expelidos durante o ciclo de descarga, seja por um compressor acionado mecanicamente por um sistema de correia e polias, mas isso já é conversa para uma próxima vez.

É importante ter em mente que o deslocamento volumétrico do motor é apenas um dos responsáveis pelo torque e potência que ele produz. Prova disso é que há tempos os fabricantes vêm investindo no “downsizing” — ou seja, desenvolvendo motores menores, que privilegiam o consumo e reduzem a emissão de poluentes, mas que isso resulte em prejuízos palpáveis ne desempenho. Para desespero dos puristas, os enormes V8 vêm cedendo espaço aos V6, e estes a versões de 4 ou 3 cilindros, geralmente de 1000 cc, mas com performance equivalente (ou até superior). Mas isso já é outra conversa.

Dúvidas? Escreva.

quinta-feira, 1 de novembro de 2018

VEÍCULOS FLEX: É MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 2)


NADA INSPIRA MAIS CORAGEM AO MEDROSO DO QUE O MEDO ALHEIO.

Se ter um carro movido a álcool nos anos 80 e 90 era uma provação (a ponto de o slogan do governo “Carro a Álcool — Você ainda Vai Ter Um — soar como “praga de madrinha”), ter um veículo flexível (ou bicombustível) de hoje em dia é tudo de bom, sobretudo porque a maior parte dos problemas verificados nas primeiras safras das versões a álcool já foi sanada há tempos. Assim, a liberdade de escolher entre os dois combustíveis na hora de abastecer vem conquistando os motoristas e estimulando os fabricantes a aumentar a produção dos veículos “flex” e a “tropicalizar” alguns modelos importados, de modo a lhes garantir a mesma prerrogativa.

Como eu disse na postagem anterior, esse “prodígio” só foi possível depois que a indústria finalmente aposentou o pré-histórico carburador, que dosava a mistura queimada nas câmaras de combustão do motor através de gargulantes (também chamados de “giclês), resultando numa proporção estequiométrica invariável — em torno de 14,6:1 nos modelos à gasolina e 8,4:1 nos modelos a álcool. Já na injeção eletrônica, sensores estrategicamente posicionados realizam diversas medições em tempo real e enviam os dados a um módulo que realiza ajustes na mistura, no ponto de ignição, etc., de maneira a otimizar a queima. Daí por que os veículos “flexíveis” podem ser abastecidos com gasolina, álcool ou a mistura de ambos em qualquer proporção.

Por proporção estequiométrica, entenda-se a relação entre a quantidade de ar e combustível que chega até a câmara de combustão, é comprimida pelo movimento ascendente do pistão e inflamada pela centelha produzida pela vela de ignição. A “explosão” resultante gera o movimento descendente do êmbolo, cuja biela faz girar o eixo de manivelas responsável por transmitir essa “força” para as rodas motrizes, mas não sem o concurso do sistema de embreagem, das engrenagem da caixa de câmbio, do diferencial, etc. (A quem interessar possa, tudo isso foi detalhado numa matéria iniciada nesta postagem).

Uma proporção estequiométrica de 14,6:1 — como a que é usada nos motores à gasolina — indica que a mistura é composta de 14,6 vezes mais ar do que combustível (ainda bem que não pagamos pelo ar). No álcool, a proporção é de 8,4:1, e a razão de essa mistura ser mais “rica” é o menor poder calorífico do etanol.

Observação: Não confunda proporção estequiométrica com taxa de compressão, pois esta última indica quantas vezes a mistura ar-combustível é comprimida pelo pistão. Uma taxa de compressão em torno de 10:1 (como a que é utilizada nos motores à gasolina) significa que a mistura é comprimida 10 vezes antes de a centelha produzida pela vela de ignição provocar sua queima. Nos veículos a álcool, essa taxa aumenta para 12:1. Tenha em mente que a taxa de compressão reflete diretamente no rendimento térmico do motor, mas é limitada pela capacidade de detonação do combustível (voltarei a esse assunto oportunamente).

Via de regra, um carro flex “roda menos quilômetros por litro” com álcool do que com gasolina, mas isso não significa necessariamente maior custo por quilômetro — embora exija abastecimentos mais frequentes, o que pode ser um problema em viagens longas por estradas nas quais os postos ficam muito espaçados entre si. Se a diferença de preço entre os dois combustíveis for de 30%, o custo empata; se for maior, será mais vantajoso abastecer com etanol, como reza a tal regrinha dos 70% que que eu mencionei no início do capítulo anterior.

Mas vantagens de usar álcool não param por aí, como veremos na postagem da próxima segunda-feira. Até lá.

Visite minhas comunidades na Rede .Link: