Mostrando postagens com marcador mecânica. Mostrar todas as postagens
Mostrando postagens com marcador mecânica. Mostrar todas as postagens

quarta-feira, 28 de agosto de 2019

AINDA SOBRE MOTORES DE COMBUSTÃO INTERNA DO CLICO OTTO (CONTINUAÇÃO)

TUDO QUE SOBE TEM QUE DESCER.

Destrinchando melhor o que vimos nos capítulos anteriores, motores de quatro tempos (ciclo Otto) dividem-se, grosso modo, em três partes: Cabeçote, bloco e cárter.

O número de cilindros — que ficam no bloco — varia conforme o projeto; aqui pelas nossas bandas, a maioria dos veículos de fabricação recente utiliza motores com 3 ou 4 cilindros, mas isso não significa que não existam modelos com 5, 6, 8 e até 12 cilindros.

No interior cada cilindro, um pistão (ou êmbolo), ligado ao virabrequim por uma biela, sobe e desce milhares de vezes por minuto, conforme o regime de rotações (RPM) do motor. À distância que ele percorre do ponto morto superior (PMS) ao inferior (PMI) e vice-versa dá-se o nome de "curso", e esse curso é determinado pelo tamanho da biela.

Como o êmbolo sobe e desce duas vezes a cada volta do virabrequim, são quatro as fases (ou tempos) do ciclo Otto: admissão, compressão, explosão e descarga, mas apenas a fase de explosão (ou combustão) que produz energia — daí ela ser considerada como o ciclo de força ou ciclo ativo do motor (mais detalhes na postagem anterior).

Para sincronizar o movimento dos pistões com a abertura e o fechamento das válvulas, engrenagens posicionadas nas extremidades dianteiras do eixo-comando de válvulas e do virabrequim trabalham interligadas por uma correia sincronizadora (feita de borracha combinada com cintas de aço). Alguns fabricantes optam pela "corrente de sincronização", que, por ser de metal e trabalhar com lubrificação, têm vida útil superior, mas costuma ser barulhenta e custar mais caro na hora da troca. 

Tanto num caso como no outro, deve-se substituir esse componente e seu respectivo atuador de tempos em tempos (consulte o manual do seu veículo para saber a frequência indicada pelo fabricante). Em caso de quebra, o sobe e desce dos pistões e o abre e fecha das válvulas perdem o sincronismo. Além de deixar o motorista a pé, isso pode causar entortamento de válvulas, empenamento do cabeçote e danos a outros componentes internos do motor.

Voltando às válvulas nos quatro tempos do ciclo Otto:

1) Na fase de admissão, somente as válvulas de admissão se abrem, fazendo com que a mistura ar-combustível seja aspirada para o interior do cilindro pelo movimento descendente do pistão;

2) Na fase de compressão, tanto as válvulas de admissão quanto as de escapamento se fecham, garantindo que o movimento ascendente do êmbolo comprima a mistura dentro da câmara de combustão (por câmara de combustão, entenda-se o espaço que sobra entre a base do cabeçote e cabeça do pistão quando este último alcança o PMS);

3) Na fase de combustão, as válvulas de admissão e de descarga permanecem fechadas enquanto a centelha produzida pela vela de ignição inflama a mistura e a "explosão" resultante empurra o êmbolo de volta ao PMI, produzindo a energia mecânica que é transmitida pela biela ao virabrequim;

4) Na fase de exaustão (ou descarga), as válvulas de escapamento se abrem, fazendo com que o movimento novamente ascendente do pistão expulse do cilindro as sobras dos gases produzidos pela combustão, dando início a um novo ciclo, e assim sucessivamente.

Amanhã continuamos daqui.

segunda-feira, 12 de novembro de 2018

VEÍCULOS FLEX: MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 7)


VIVA COMO SE FOSSE MORRER AMANHÃ. APRENDA COMO SE FOSSE VIVER ETERNAMENTE.

Como vimos ao longo desta sequência, o grande atrativo dos veículos Flex é a possibilidade de abastecê-los com gasolina, etanol ou uma mistura de ambos em qualquer proporção. Usar álcool tende a ser mais vantajoso quando seu preço na bomba é igual ou inferior a 70% do preço da gasolina, mas há outras vantagens. Para citar um exemplo notório, sua octanagem é 20% superior à da gasolina comum, o que resulta em mais torque e potência. A título de ilustração, o motor 1.6 Flex que equipa o New Fiesta gera 127,6 cv no álcool e 125,2 cv na gasolina. No Prisma 1.4 Flex, essa diferença é um pouco maior — 97 cv contra 89 cv —, e no Corolla 2.0, maior ainda — 154 cv conta 143 cv (volto a esse assunto mais adiante).

Via de regra, o motor atinge sua potência máxima em regimes (rotações por minuto) elevados. Nos exemplos do parágrafo anterior, isso significa algo entre 6.000 rpm e 6.500 rpm. O torque máximo é obtido em regimes inferires, o que é positivo: mais força em baixas rotações proporciona melhor aceleração e, por tabela, favorece as retomadas de velocidade. Portanto, ao esquadrinhar a ficha técnica do seu veículo (ou do modelo que você tem em vista), observe o valor do torque máximo (expresso em kgfm ou Nm) e a faixa de rotação na qual ele surge. Quanto mais “plana” for a “curva de torque”, tanto melhor.

Devido ao poder calorífico menor que o da gasolina, o etanol requer uma mistura “mais rica” — ou seja, sua taxa estequiométrica (proporção entre o combustível e o ar que compõem a mistura) é de aproximadamente 8,4:1, o que corresponde, em números redondos, a oito partes de ar para uma de combustível. Na gasolina, a taxa é de 14,6:1 (catorze partes de ar para uma de combustível, também em números redondos).

Nos veículos carburados, a dosagem da mistura ar-combustivel pulverizada no coletor de admissão era estabelecida pelos giclês (ou gargulantes) do carburador, o que resultava numa relação estequiométrica invariável. Já a injeção eletrônica — que, como vimos, é a grande responsável pelo desenvolvimento dos motores bicombustível — faz ajustes em tempo real, estabelecendo quantidades e proporções de ar e combustível adequadas a cada momento específico. O etanol custa mais barato, mas rende menos e resulta numa autonomia enferior à da gasolina. Em outras palavras, gasta-se menos para abastecer, mas as paradas no posto são mais frequentes — o que pode ser um problema em viagens, sobretudo se os postos ficarem muito distantes entre si.

Motores à gasolina produzem melhores resultados com taxas de compressão em torno de 10:1, ao passo que o álcool (a exemplo das gasolinas premium) requer taxas mais elevadas — entre 11,5:1 e 14:1. Atualmente, os engenheiros precisam definir uma relação intermediária, que atenda às exigências dos dois combustíveis. Mas isso deve mudar com a tecnologia que vem sendo desenvolvida pela Nissan com vistas a uma taxa de compressão variável. Quando ela se tornar comercialmente viável, será possível explorar o melhor de cada combustível (mais detalhes nesta postagem).

Observação: Eu já disse, mas não custa repetir que a taxa de compressão corresponde ao número de vezes que a mistura ar-combustível é comprimida pelo movimento ascendente do pistão no ciclo de compressão, até ser inflamada pela centelha produzida pela vela de ignição (no ciclo de explosão), e que esse parêtro depende precipuamente do curso do pistão — para mais detalhes sobre o funcionamento do motor de quatro tempos (ciclo Otto), releia esta postagem.

Amanhã eu conto o resto.

sexta-feira, 9 de novembro de 2018

VEÍCULOS FLEX: MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 6)


QUANDO ESTAMOS MENTALMENTE LIVRES, NADA MAIS IMPORTA.

Nossos primeiros veículos movidos a álcool eram pródigos em problemas. Componentes que entravam em contato direto com o combustível — como o tanque e respectiva boia — sofriam muito com a corrosão. No carburador, o revestimento aplicado como proteção descamava e entupia os gargulantes. Além disso, a boia da cuba “encharcava”, o combustível percolava, o consumo aumentava e a marcha-lenta oscilava.

Rodar no anda-e-para do trânsito era uma verdadeira agonia, superada somente pela provação que era ligar o motor pela manhã, sobretudo no inverno. O sistema de partida a frio (formado por um pequeno reservatório com gasolina e uma bombinha elétrica) até ajudava, mas muita gente não se lembrava de abastecê-lo ou deixava a gasolina ficava velha (ela não é exatamente perecível, mas perde suas características originais por conta da oxidação dos componentes orgânicos e da evaporação das frações leves, mais voláteis).

A boa notícia é que a tecnologia evoluiu um bocado desde o final da década de 1970, quando os primeiros veículos a álcool pipocaram no Brasil e o slogan “Carro a álcool, você ainda vai ter um”, que deveria estimular o consumidor, passou a ser visto como uma espécie de praga ou maldição. Hoje em dia, no entanto, quem tem um carro Flex só nota a diferença quando abastece, seja pelo preço, seja pela frequência com que precisa parar no posto. Mesmo assim, alguns modelos continuam trazendo o famigerado tanquinho — e ainda tem gente que não se lembra de abastecê-lo, sobretudo se roda com gasolina durante a maior parte do tempo. 

O sistema auxiliar de partida só atua quando há mais de 90% de etanol no tanque e a temperatura está abaixo de 16ºC. Daí ser comum a gasolina do tanquinho a “envelhecer” e o motor, a não “pegar” em temperaturas abaixo de 15°C. O recomendável é substituir a gasolina remanescente a cada 60 dias, de preferência por gasolina Podium — ela custa mais caro, mas como a capacidade dos tanquinhos mal chega a um litro, sua durabilidade compensa o investimento.

Observação: Alguns sistemas injetam gasolina mesmo quando não há necessidade para evitar que a gasolina fique velha (com temperatura abaixo de 20°C, no caso dos Honda, ou em alguns momentos, mesmo nos dias mais quentes, como nos modelos Fiat). 

Outra consequência de deixar o tanquinho seco por muito tempo (o que é comum nas regiões onde o calor predomina durante a maior parte do ano) é o ressecamento do anel de borracha que veda a conexão da bomba elétrica. Portanto, ao menor sinal de vazamento, providencie a substituição do anel.

Quando (e se) você comprar um veículo Flex, dê preferência a um modelo que dispense o tanquinho auxiliar. Fabricantes de sistemas de injeção como Bosch e Magneti Marelli, entre outros, utilizam uma espécie de resistência elétrica (como as de chuveiro) para aquecer o etanol em poucos segundos e injetá-lo na câmara a uma temperatura entre 20°C e 30°C. Mas há soluções ainda mais modernas, como a usada pela Ford no Focus 2.0 — primeiro veículo Flex com injeção direta de combustível. Nesse caso, a pressão com a qual o combustível entra na câmara de combustão é aumentada em 50 vezes, fazendo com que o etanol seja atomizado. Paralelamente, o motor gira dois ciclos sem injeção de combustível, provocando o aquecimento dos cilindros. Assim, o carro pega facilmente, mesmo com álcool, em temperaturas de até -10°C (frio que a gente dificilmente enferentará no Brasil). 

Por hoje é só. Continuamos na próxima postagem.

segunda-feira, 5 de novembro de 2018

VEÍCULOS FLEX: MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 3)


ENGOLIMOS DE UMA VEZ A MENTIRA QUE NOS ADULA E BEBEMOS GOTA A GOTA A VERDADE QUE NOS AMARGA.

Veículos flex (equipados com motor bicombustível) podem ser abastecidos com gasolina, etanol ou uma mistura de ambos em qualquer proporção. Insisto neste ponto porque muita gente ainda acha que é preciso gastar toda a gasolina do tanque antes de abastecer com álcool (e vice-versa), o que não faz o menor sentido. Mas sempre haverá um frentista de posto (ou outro “entendido” de plantão) sempre pronto a convencê-lo do contrário.

Observação: Se você der ouvidos a frentista de posto, trocará as palhetas do limpador de para-brisa toda vez que abastecer o carro. Além de completar o óleo do motor, naturalmente. Meça o nível do óleo você mesmo, semanalmente, num local plano, de preferência pela manhã, antes de ligar o motor. Na impossibilidade, faça-o somente depois de deixar o motor esfriar por uns 15 minutos (tempo necessário para o óleo desça das partes altas e se acumule no cárter). Se o nível estiver entre as marcas de mínimo e máximo da vareta, não é preciso adicionar óleo. Lembre-se de que os frentistas costumam receber comissão pela venda de palhetas, aditivos e outros badulaques, daí seu empenho em nos empurrar essas coisas.

Voltando à vaca fria: Quando a mistura ar-combustível era formada nos jurássicos carburadores, a relação estequiométrica (proporção entre o ar e combustível) era obtida através dos gargulantes (ou giclês). No caso da gasolina, a proporção ideal é de 14,6:1, ou seja, a quantidade de ar na mistura é 14,6 vezes maior que a do combustível (ainda bem que não pagamos pelo ar). No caso do etanol, que tem poder calorífico inferior ao da gasolina, a proporção é de 8,4:1, o que se traduz numa mistura “mais rica”.

Em face do exposto, fica fácil concluir que, sem o concurso da injeção eletrônica, seria inviável alternar entre álcool e gasolina (ou usar uma mistura dos dois) e, portanto, não teríamos carros flex. Ao contrário dos carburadores, onde a relação estequiométrica não varia, a injeção conta com sensores estrategicamente posicionados, que monitoram as necessidades do propulsor em tempo real, permitindo à central estabelecer quantidades e proporções adequadas a cada momento específico, o que assegura melhor desempenho com menor consumo de combustível.

À exemplo da relação estequiométrica, a taxa de compressão — que corresponde ao número de vezes que a mistura ar-combustível é comprimida pelo movimento ascendente do pistão, no interior do cilindro, antes que a centelha produzida pela vela de ignição provoque sua queima — varia conforme o combustível para o qual o motor é projetado. No caso da gasolina, ela é de 10:1 e no do álcool, de 12:1. Todavia, ao contrário da relação estequiométrica, a taxa de compressão não pode ser alterada pelo sistema de injeção eletrônica (isso ficará mais claro ao longo dos próximos capítulos).

A título de curiosidade, a Nissan vem desenvolvendo um motor com taxa de compressão variável, que pode tornar os veículos flex mais eficientes (embora o objetivo da montadora japonesa seja otimizar o funcionamento dos motores turboalimentados). Explicando em rápidas pinceladas, a variação da taxa de compressão é obtida pela alteração do curso dos pistões diretamente no eixo de manivelas (onde as bielas se conectam). Uma engrenagem harmônica comanda um braço, esse braço gira um eixo, e esse eixo ajusta a inclinação do virabrequim, comprimindo a mistura mais ou menos vezes, de acordo com uma série de variáveis.

Não ficou claro? Então releia o parágrafo acima depois de ler os próximos capítulos desta sequência e você certamente entenderá melhor o que essa inovação significa.

Por hoje é só. Continuamos depois do final de semana prolongado pelo feriado de finados. Até lá.

quinta-feira, 1 de novembro de 2018

VEÍCULOS FLEX: É MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 2)


NADA INSPIRA MAIS CORAGEM AO MEDROSO DO QUE O MEDO ALHEIO.

Se ter um carro movido a álcool nos anos 80 e 90 era uma provação (a ponto de o slogan do governo “Carro a Álcool — Você ainda Vai Ter Um — soar como “praga de madrinha”), ter um veículo flexível (ou bicombustível) de hoje em dia é tudo de bom, sobretudo porque a maior parte dos problemas verificados nas primeiras safras das versões a álcool já foi sanada há tempos. Assim, a liberdade de escolher entre os dois combustíveis na hora de abastecer vem conquistando os motoristas e estimulando os fabricantes a aumentar a produção dos veículos “flex” e a “tropicalizar” alguns modelos importados, de modo a lhes garantir a mesma prerrogativa.

Como eu disse na postagem anterior, esse “prodígio” só foi possível depois que a indústria finalmente aposentou o pré-histórico carburador, que dosava a mistura queimada nas câmaras de combustão do motor através de gargulantes (também chamados de “giclês), resultando numa proporção estequiométrica invariável — em torno de 14,6:1 nos modelos à gasolina e 8,4:1 nos modelos a álcool. Já na injeção eletrônica, sensores estrategicamente posicionados realizam diversas medições em tempo real e enviam os dados a um módulo que realiza ajustes na mistura, no ponto de ignição, etc., de maneira a otimizar a queima. Daí por que os veículos “flexíveis” podem ser abastecidos com gasolina, álcool ou a mistura de ambos em qualquer proporção.

Por proporção estequiométrica, entenda-se a relação entre a quantidade de ar e combustível que chega até a câmara de combustão, é comprimida pelo movimento ascendente do pistão e inflamada pela centelha produzida pela vela de ignição. A “explosão” resultante gera o movimento descendente do êmbolo, cuja biela faz girar o eixo de manivelas responsável por transmitir essa “força” para as rodas motrizes, mas não sem o concurso do sistema de embreagem, das engrenagem da caixa de câmbio, do diferencial, etc. (A quem interessar possa, tudo isso foi detalhado numa matéria iniciada nesta postagem).

Uma proporção estequiométrica de 14,6:1 — como a que é usada nos motores à gasolina — indica que a mistura é composta de 14,6 vezes mais ar do que combustível (ainda bem que não pagamos pelo ar). No álcool, a proporção é de 8,4:1, e a razão de essa mistura ser mais “rica” é o menor poder calorífico do etanol.

Observação: Não confunda proporção estequiométrica com taxa de compressão, pois esta última indica quantas vezes a mistura ar-combustível é comprimida pelo pistão. Uma taxa de compressão em torno de 10:1 (como a que é utilizada nos motores à gasolina) significa que a mistura é comprimida 10 vezes antes de a centelha produzida pela vela de ignição provocar sua queima. Nos veículos a álcool, essa taxa aumenta para 12:1. Tenha em mente que a taxa de compressão reflete diretamente no rendimento térmico do motor, mas é limitada pela capacidade de detonação do combustível (voltarei a esse assunto oportunamente).

Via de regra, um carro flex “roda menos quilômetros por litro” com álcool do que com gasolina, mas isso não significa necessariamente maior custo por quilômetro — embora exija abastecimentos mais frequentes, o que pode ser um problema em viagens longas por estradas nas quais os postos ficam muito espaçados entre si. Se a diferença de preço entre os dois combustíveis for de 30%, o custo empata; se for maior, será mais vantajoso abastecer com etanol, como reza a tal regrinha dos 70% que que eu mencionei no início do capítulo anterior.

Mas vantagens de usar álcool não param por aí, como veremos na postagem da próxima segunda-feira. Até lá.

Visite minhas comunidades na Rede .Link: