Mostrando postagens com marcador flex. Mostrar todas as postagens
Mostrando postagens com marcador flex. Mostrar todas as postagens

quarta-feira, 14 de novembro de 2018

VEÍCULOS FLEX: MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 9) — SOBRE TORQUE E POTÊNCIA


IMAGINAÇÃO É A INTELIGÊNCIA SE DIVERTINDO.
Ontem, 13, foi a segunda terça-feira de novembro, dia de Patch Tuesday da Microsoft. O problemático update de outubro (build 1809) não foi incluído (felizmente; se é para ter problemas, melhor ficar com a versão 1803 até que a mãe da criança dê seu jeito). Na minha máquina, o patch KB4467702 entrou liso feito quiabo, a exemplo de uma atualização do Adobe Flash Player. A ferramenta de remoção de software malicioso também rodou sem novidades. Desejo a mesma sorte a todos.

Abastecer um veículo Flex com etanol traz benefícios que transcendem a economia e o desempenho (o álcool custa mais barato e gera mais torque e potência). Mas nem tudo são flores nesse jardim. Antes de detalhar isso melhor, porém, é preciso preencher algumas lacunas que ficaram em aberto ao longo dos capítulos anteriores. Acompanhe.
Numa definição não muito exata do ponto de vista técnico, mas adequada aos propósitos desta postagem, a potência — que é medida em cavalos vapor (cv) cavalos de força (hp, do inglês horse-power) ou quilowatts (kW) — é responsável por fazer o veículo ganhar velocidade, ao passo que o torque — expresso em quilogramas-força/metro (kgfm) ou em Newtons-metro (Nm) —, por entregar a força.
Para fugir das intrincadas fórmulas que aprendemos no colégio e esquecemos logo após o vestibular, troquemos isso em miúdos: levar algo de um ponto a outro é trabalho, e torque representa trabalho, embora seja uma força com tendência a girar objetos (apertar as porcas da roda do carro é um bom exemplo: ao aplicar uma determinada força na chave de rodas, você cria o torque necessário para rosquear a porca no prisioneiro). Já a potência tem a ver com a rapidez com que esse trabalho é realizado (veículos mais potentes alcançam velocidades mais elevadas e se deslocam de um ponto a outro mais rapidamente do que os menos potentes).
Conforme vimos no capítulo anterior, o motor desenvolve sua potência máxima em regimes de giro elevados — entre 5.000 e 7.000 rotações por minuto nos carros de passeio, mas que chegam a 15.000 rpm nos bólidos de F1 —, ao passo que o torque máximo tende a surgir regimes inferiores — o que é bom: quanto menor o regime de giros em que ele é produzido e mais plana for sua “curva”, tanto melhor (vide figura que ilustra esta postagem).
Para não abrir mais uma lacuna a ser preenchida mais adiante, lembro que o torque costuma ser associado à arrancada, e a potência, à velocidade, embora ambos sejam produzidos pela combustão, aumentem conforme o giro do motor se eleva e atuem em conjunto durante todo o tempo em o veículo é utilizado. O fato de o torque máximo surgir em regimes inferiores ao da potência máxima se explica pela distância horizontal das bielas, que varia de acordo com sua posição em relação ao virabrequim. Com isso, o torque também varia, já que ele é o produto da força pela distância. Note que, com o pistão no ponto mais alto do ciclo e a biela alinhada verticalmente com o centro do virabrequim, nenhum torque é gerado — seria como posicionar a chave de roda na vertical e subir em cima dela; ainda que você conseguisse se equilibrar, a porca não se soltaria, pois o torque só se manifesta quando a força atua numa alavanca perpendicular ao eixo.
A potência, por ser associada à velocidade máxima, é usada como referência primária da eficiência do motor (isso nos veículos de passeio; nos ônibus e caminhões valoriza-se mais o torque — que  costuma ser mais abundante nos motores do ciclo Diesel, além de surgir em rotações mais baixas que nos do ciclo Otto. A título de ilustração, um motor diesel de 12 litros produz 400 cavalos (quase a mesma potência do motor V8 a gasolina de um Ford Mustang preparado), mas gera incríveis 228 kgfm de torque a 1.200 rpm, enquanto o Mustang entrega “apenas” 48,9 kgfm a 5.600 rpm.
torque é expresso em Newtons-metro (Nm) ou em Quilogramas-força x metro (kgfm ou m.kgf). 1 Nm corresponde ao torque produzido por 1 N de força aplicada a 1 m de distância do ponto de rotação, e equivale a aproximadamente 0,10 kgfm. Para entender isso melhor, pense na chave de rodas do nosso exemplo: quanto maior for seu braço, menor será o esforço (torque) necessário para girar a porca.
Motores de combustão interna (como os que equipam a maioria dos nossos veículos) transformam a energia calorífica gerada pela queima da mistura ar-combustível na energia mecânica produzida pelo movimento descendente do pistão. Em outras palavras, a força (torque) resultante da explosão é transmitida pela biela ao virabrequim, que a transmite, através do volante, ao câmbio (através da embreagem ou do conversor de torque, conforme o caso), que a desmultiplica e repassa ao diferencial, que faz girar as rodas motrizes (veja isso em detalhes nesta postagem).
Para não encompridar demais este texto, trataremos das unidades de potência na próxima postagem. Bom feriadão a todos.

segunda-feira, 5 de novembro de 2018

VEÍCULOS FLEX: MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 3)


ENGOLIMOS DE UMA VEZ A MENTIRA QUE NOS ADULA E BEBEMOS GOTA A GOTA A VERDADE QUE NOS AMARGA.

Veículos flex (equipados com motor bicombustível) podem ser abastecidos com gasolina, etanol ou uma mistura de ambos em qualquer proporção. Insisto neste ponto porque muita gente ainda acha que é preciso gastar toda a gasolina do tanque antes de abastecer com álcool (e vice-versa), o que não faz o menor sentido. Mas sempre haverá um frentista de posto (ou outro “entendido” de plantão) sempre pronto a convencê-lo do contrário.

Observação: Se você der ouvidos a frentista de posto, trocará as palhetas do limpador de para-brisa toda vez que abastecer o carro. Além de completar o óleo do motor, naturalmente. Meça o nível do óleo você mesmo, semanalmente, num local plano, de preferência pela manhã, antes de ligar o motor. Na impossibilidade, faça-o somente depois de deixar o motor esfriar por uns 15 minutos (tempo necessário para o óleo desça das partes altas e se acumule no cárter). Se o nível estiver entre as marcas de mínimo e máximo da vareta, não é preciso adicionar óleo. Lembre-se de que os frentistas costumam receber comissão pela venda de palhetas, aditivos e outros badulaques, daí seu empenho em nos empurrar essas coisas.

Voltando à vaca fria: Quando a mistura ar-combustível era formada nos jurássicos carburadores, a relação estequiométrica (proporção entre o ar e combustível) era obtida através dos gargulantes (ou giclês). No caso da gasolina, a proporção ideal é de 14,6:1, ou seja, a quantidade de ar na mistura é 14,6 vezes maior que a do combustível (ainda bem que não pagamos pelo ar). No caso do etanol, que tem poder calorífico inferior ao da gasolina, a proporção é de 8,4:1, o que se traduz numa mistura “mais rica”.

Em face do exposto, fica fácil concluir que, sem o concurso da injeção eletrônica, seria inviável alternar entre álcool e gasolina (ou usar uma mistura dos dois) e, portanto, não teríamos carros flex. Ao contrário dos carburadores, onde a relação estequiométrica não varia, a injeção conta com sensores estrategicamente posicionados, que monitoram as necessidades do propulsor em tempo real, permitindo à central estabelecer quantidades e proporções adequadas a cada momento específico, o que assegura melhor desempenho com menor consumo de combustível.

À exemplo da relação estequiométrica, a taxa de compressão — que corresponde ao número de vezes que a mistura ar-combustível é comprimida pelo movimento ascendente do pistão, no interior do cilindro, antes que a centelha produzida pela vela de ignição provoque sua queima — varia conforme o combustível para o qual o motor é projetado. No caso da gasolina, ela é de 10:1 e no do álcool, de 12:1. Todavia, ao contrário da relação estequiométrica, a taxa de compressão não pode ser alterada pelo sistema de injeção eletrônica (isso ficará mais claro ao longo dos próximos capítulos).

A título de curiosidade, a Nissan vem desenvolvendo um motor com taxa de compressão variável, que pode tornar os veículos flex mais eficientes (embora o objetivo da montadora japonesa seja otimizar o funcionamento dos motores turboalimentados). Explicando em rápidas pinceladas, a variação da taxa de compressão é obtida pela alteração do curso dos pistões diretamente no eixo de manivelas (onde as bielas se conectam). Uma engrenagem harmônica comanda um braço, esse braço gira um eixo, e esse eixo ajusta a inclinação do virabrequim, comprimindo a mistura mais ou menos vezes, de acordo com uma série de variáveis.

Não ficou claro? Então releia o parágrafo acima depois de ler os próximos capítulos desta sequência e você certamente entenderá melhor o que essa inovação significa.

Por hoje é só. Continuamos depois do final de semana prolongado pelo feriado de finados. Até lá.

quinta-feira, 1 de novembro de 2018

VEÍCULOS FLEX: É MELHOR USAR GASOLINA OU ÁLCOOL? (Parte 2)


NADA INSPIRA MAIS CORAGEM AO MEDROSO DO QUE O MEDO ALHEIO.

Se ter um carro movido a álcool nos anos 80 e 90 era uma provação (a ponto de o slogan do governo “Carro a Álcool — Você ainda Vai Ter Um — soar como “praga de madrinha”), ter um veículo flexível (ou bicombustível) de hoje em dia é tudo de bom, sobretudo porque a maior parte dos problemas verificados nas primeiras safras das versões a álcool já foi sanada há tempos. Assim, a liberdade de escolher entre os dois combustíveis na hora de abastecer vem conquistando os motoristas e estimulando os fabricantes a aumentar a produção dos veículos “flex” e a “tropicalizar” alguns modelos importados, de modo a lhes garantir a mesma prerrogativa.

Como eu disse na postagem anterior, esse “prodígio” só foi possível depois que a indústria finalmente aposentou o pré-histórico carburador, que dosava a mistura queimada nas câmaras de combustão do motor através de gargulantes (também chamados de “giclês), resultando numa proporção estequiométrica invariável — em torno de 14,6:1 nos modelos à gasolina e 8,4:1 nos modelos a álcool. Já na injeção eletrônica, sensores estrategicamente posicionados realizam diversas medições em tempo real e enviam os dados a um módulo que realiza ajustes na mistura, no ponto de ignição, etc., de maneira a otimizar a queima. Daí por que os veículos “flexíveis” podem ser abastecidos com gasolina, álcool ou a mistura de ambos em qualquer proporção.

Por proporção estequiométrica, entenda-se a relação entre a quantidade de ar e combustível que chega até a câmara de combustão, é comprimida pelo movimento ascendente do pistão e inflamada pela centelha produzida pela vela de ignição. A “explosão” resultante gera o movimento descendente do êmbolo, cuja biela faz girar o eixo de manivelas responsável por transmitir essa “força” para as rodas motrizes, mas não sem o concurso do sistema de embreagem, das engrenagem da caixa de câmbio, do diferencial, etc. (A quem interessar possa, tudo isso foi detalhado numa matéria iniciada nesta postagem).

Uma proporção estequiométrica de 14,6:1 — como a que é usada nos motores à gasolina — indica que a mistura é composta de 14,6 vezes mais ar do que combustível (ainda bem que não pagamos pelo ar). No álcool, a proporção é de 8,4:1, e a razão de essa mistura ser mais “rica” é o menor poder calorífico do etanol.

Observação: Não confunda proporção estequiométrica com taxa de compressão, pois esta última indica quantas vezes a mistura ar-combustível é comprimida pelo pistão. Uma taxa de compressão em torno de 10:1 (como a que é utilizada nos motores à gasolina) significa que a mistura é comprimida 10 vezes antes de a centelha produzida pela vela de ignição provocar sua queima. Nos veículos a álcool, essa taxa aumenta para 12:1. Tenha em mente que a taxa de compressão reflete diretamente no rendimento térmico do motor, mas é limitada pela capacidade de detonação do combustível (voltarei a esse assunto oportunamente).

Via de regra, um carro flex “roda menos quilômetros por litro” com álcool do que com gasolina, mas isso não significa necessariamente maior custo por quilômetro — embora exija abastecimentos mais frequentes, o que pode ser um problema em viagens longas por estradas nas quais os postos ficam muito espaçados entre si. Se a diferença de preço entre os dois combustíveis for de 30%, o custo empata; se for maior, será mais vantajoso abastecer com etanol, como reza a tal regrinha dos 70% que que eu mencionei no início do capítulo anterior.

Mas vantagens de usar álcool não param por aí, como veremos na postagem da próxima segunda-feira. Até lá.

Visite minhas comunidades na Rede .Link: